home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Personal Computer World 2009 February
/
PCWFEB09.iso
/
Software
/
Resources
/
Audio, Video & Photo
/
Audacity 1.3.5
/
audacity-win-unicode-1.3.5.exe
/
{app}
/
Nyquist
/
dspprims.lsp
< prev
next >
Wrap
Lisp/Scheme
|
2003-10-01
|
17KB
|
524 lines
;; dspprims.lsp -- interface to dsp primitives
;; ARESON - notch filter
;;
(defun areson (s c b &optional (n 0))
(multichan-expand #'nyq:areson s c b n))
(setf areson-implementations
(vector #'snd-areson #'snd-aresonvc #'snd-aresoncv #'snd-aresonvv))
;; NYQ:ARESON - notch filter, single channel
;;
(defun nyq:areson (signal center bandwidth normalize)
(select-implementation-1-2 areson-implementations
signal center bandwidth normalize))
;; hp - highpass filter
;;
(defun hp (s c)
(multichan-expand #'nyq:hp s c))
(setf hp-implementations
(vector #'snd-atone #'snd-atonev))
;; NYQ:hp - highpass filter, single channel
;;
(defun nyq:hp (s c)
(select-implementation-1-1 hp-implementations s c))
;; comb-delay-from-hz -- compute the delay argument
;;
(defun comb-delay-from-hz (hz caller)
(recip hz))
;; comb-feedback-from-decay -- compute the feedback argument
;;
(defun comb-feedback (decay delay)
(s-exp (mult -6.9087 delay (recip decay))))
;; COMB - comb filter
;;
;; this is just a feedback-delay with different arguments
;;
(defun comb (snd decay hz)
(multichan-expand #'nyq:comb snd decay hz))
(defun nyq:comb (snd decay hz)
(let (delay feedback len d)
; convert decay to feedback, iterate over array if necessary
(setf delay (comb-delay-from-hz hz "comb"))
(setf feedback (comb-feedback decay delay))
(nyq:feedback-delay snd delay feedback)))
;; ALPASS - all-pass filter
;;
(defun alpass (snd decay hz &optional min-hz)
(multichan-expand #'nyq:alpass snd decay hz min-hz))
(defun nyq:alpass (snd decay hz min-hz)
(let (delay feedback len d)
; convert decay to feedback, iterate over array if necessary
(setf delay (comb-delay-from-hz hz "alpass"))
(setf feedback (comb-feedback decay delay))
(nyq:alpass1 snd delay feedback min-hz)))
;; CONST -- a constant at control-srate
;;
(defun const (value &optional (dur 1.0))
(let ((d (get-duration dur)))
(snd-const value *rslt* *CONTROL-SRATE* d)))
;; CONVOLVE - slow convolution
;;
(defun convolve (s r)
(multichan-expand #'snd-convolve s r))
;; FEEDBACK-DELAY -- (delay is quantized to sample period)
;;
(defun feedback-delay (snd delay feedback)
(multichan-expand #'nyq:feedback-delay snd delay feedback))
;; SND-DELAY-ERROR -- report type error
;;
(defun snd-delay-error (snd delay feedback)
(error "feedback-delay with variable delay is not implemented"))
;; NYQ::DELAYCV -- coerce sample rates and call snd-delaycv
;;
(defun nyq:delaycv (the-snd delay feedback)
(display "delaycv" the-snd delay feedback)
(let ((the-snd-srate (snd-srate the-snd))
(feedback-srate (snd-srate feedback)))
(cond ((> the-snd-srate feedback-srate)
(setf feedback (snd-up the-snd-srate feedback)))
((< the-snd-srate feedback-srate)
(format t "Warning: down-sampling feedback in feedback-delay/comb~%")
(setf feedback (snd-down the-snd-srate feedback))))
(snd-delaycv the-snd delay feedback)))
(setf feedback-delay-implementations
(vector #'snd-delay #'snd-delay-error #'nyq:delaycv #'snd-delay-error))
;; NYQ:FEEDBACK-DELAY -- single channel delay
;;
(defun nyq:feedback-delay (snd delay feedback)
(select-implementation-1-2 feedback-delay-implementations
snd delay feedback))
;; SND-ALPASS-ERROR -- report type error
;;
(defun snd-alpass-error (snd delay feedback)
(error "alpass with constant decay and variable hz is not implemented"))
(if (not (fboundp 'snd-alpasscv))
(defun snd-alpasscv (snd delay feedback min-hz)
(error "snd-alpasscv (ALPASS with variable decay) is not implemented")))
(if (not (fboundp 'snd-alpassvv))
(defun snd-alpassvv (snd delay feedback min-hz)
(error "snd-alpassvv (ALPASS with variable decay and feedback) is not implemented")))
(defun snd-alpass-4 (snd delay feedback min-hz)
(snd-alpass snd delay feedback))
(defun snd-alpasscv-4 (the-snd delay feedback min-hz)
(display "snd-alpasscv-4" (snd-srate the-snd) (snd-srate feedback))
(let ((the-snd-srate (snd-srate the-snd))
(feedback-srate (snd-srate feedback)))
(cond ((> the-snd-srate feedback-srate)
(setf feedback (snd-up the-snd-srate feedback)))
((< the-snd-srate feedback-srate)
(format t "Warning: down-sampling feedback in alpass~%")
(setf feedback (snd-down the-snd-srate feedback))))
(display "snd-alpasscv-4 after cond" (snd-srate the-snd) (snd-srate feedback))
(snd-alpasscv the-snd delay feedback)))
(defun snd-alpassvv-4 (the-snd delay feedback min-hz)
;(display "snd-alpassvv-4" (snd-srate the-snd) (snd-srate feedback))
(let ((the-snd-srate (snd-srate the-snd))
(delay-srate (snd-srate delay))
(feedback-srate (snd-srate feedback))
max-delay)
(cond ((or (not (numberp min-hz))
(<= min-hz 0))
(error "alpass needs numeric (>0) 4th parameter (min-hz) when delay is variable")))
(setf max-delay (/ 1.0 min-hz))
; make sure delay is between 0 and max-delay
; use clip function, which is symetric, with an offset
(setf delay (snd-offset (clip (snd-offset delay (* max-delay 0.5))
max-delay)
(* max-delay -0.5)))
; now delay is between 0 and max-delay, so we won't crash nyquist when
; we call snd-alpassvv, which doesn't test for out-of-range data
(cond ((> the-snd-srate feedback-srate)
(setf feedback (snd-up the-snd-srate feedback)))
((< the-snd-srate feedback-srate)
(format t "Warning: down-sampling feedback in alpass~%")
(setf feedback (snd-down the-snd-srate feedback))))
(cond ((> the-snd-srate delay-srate)
(setf delay (snd-up the-snd-srate delay)))
((< the-snd-srate delay-srate)
(format t "Warning: down-sampling delay in alpass~%")
(setf delay (snd-down the-snd-srate delay))))
;(display "snd-alpassvv-4 after cond" (snd-srate the-snd) (snd-srate feedback))
(snd-alpassvv the-snd delay feedback max-delay)))
(setf alpass-implementations
(vector #'snd-alpass-4 #'snd-alpass-error
#'snd-alpasscv-4 #'snd-alpassvv-4))
;; NYQ:ALPASS1 -- single channel alpass
;;
(defun nyq:alpass1 (snd delay feedback min-hz)
(select-implementation-1-2 alpass-implementations
snd delay feedback min-hz))
;; S-EXP -- exponentiate a sound
;;
(defun s-exp (s) (multichan-expand #'nyq:exp s))
;; NYQ:EXP -- exponentiate number or sound
;;
(defun nyq:exp (s) (if (soundp s) (snd-exp s) (exp s)))
;; S-ABS -- absolute value of a sound
;;
(defun s-abs (s) (multichan-expand #'nyq:abs s))
;; NYQ:ABS -- absolute value of number or sound
;;
(defun nyq:abs (s) (if (soundp s) (snd-abs s) (abs s)))
;; S-SQRT -- square root of a sound
;;
(defun s-sqrt (s) (multichan-expand #'nyq:sqrt s))
;; NYQ:SQRT -- square root of a number or sound
;;
(defun nyq:sqrt (s) (if (soundp s) (snd-sqrt s) (sqrt s)))
;; INTEGRATE -- integration
;;
(defun integrate (s) (multichan-expand #'snd-integrate s))
;; S-LOG -- natural log of a sound
;;
(defun s-log (s) (multichan-expand #'nyq:log s))
;; NYQ:LOG -- log of a number or sound
;;
(defun nyq:log (s) (if (soundp s) (snd-log s) (log s)))
;; NOISE -- white noise
;;
(defun noise (&optional (dur 1.0))
(let ((d (get-duration dur)))
(snd-white *rslt* *SOUND-SRATE* d)))
(defun noise-gate (snd &optional (lookahead 0.5) (risetime 0.02) (falltime 0.5)
(floor 0.01) (threshold 0.01))
(let ((rms (lp (mult snd snd) (/ *control-srate* 10.0))))
(setf threshold (* threshold threshold))
(mult snd (gate rms lookahead risetime falltime floor threshold))))
;; QUANTIZE -- quantize a sound
;;
(defun quantize (s f) (multichan-expand #'snd-quantize s f))
;; RECIP -- reciprocal of a sound
;;
(defun recip (s) (multichan-expand #'nyq:recip s))
;; NYQ:RECIP -- reciprocal of a number or sound
;;
(defun nyq:recip (s) (if (soundp s) (snd-recip s) (/ (float s))))
;; RMS -- compute the RMS of a sound
;;
(defun rms (s &optional (rate 100.0) window-size)
(let (rslt step-size)
(setf step-size (round (/ (snd-srate s) rate)))
(cond ((null window-size)
(setf window-size step-size)))
(setf s (prod s s))
(setf result (snd-avg s window-size step-size OP-AVERAGE))
;; compute square root of average
(s-exp (scale 0.5 (s-log result)))))
;; RESON - bandpass filter
;;
(defun reson (s c b &optional (n 0))
(multichan-expand #'nyq:reson s c b n))
(setf reson-implementations
(vector #'snd-reson #'snd-resonvc #'snd-resoncv #'snd-resonvv))
;; NYQ:RESON - bandpass filter, single channel
;;
(defun nyq:reson (signal center bandwidth normalize)
(select-implementation-1-2 reson-implementations
signal center bandwidth normalize))
;; SHAPE -- waveshaper
;;
(defun shape (snd shape origin)
(multichan-expand #'snd-shape snd shape origin))
;; SLOPE -- calculate the first derivative of a signal
;;
(defun slope (s) (multichan-expand #'nyq:slope s))
;; NYQ:SLOPE -- first derivative of single channel
;;
(defun nyq:slope (s)
(let* ((sr (snd-srate s))
(sr-inverse (/ sr)))
(snd-xform (snd-slope s) sr (- sr-inverse) 0.0 MAX-STOP-TIME 1.0)))
;; lp - lowpass filter
;;
(defun lp (s c)
(multichan-expand #'nyq:lp s c))
(setf lp-implementations
(vector #'snd-tone #'snd-tonev))
;; NYQ:lp - lowpass filter, single channel
;;
(defun nyq:lp (s c)
(select-implementation-1-1 lp-implementations s c))
;;; fixed-parameter filters based on snd-biquad
(setf Pi 3.14159265358979)
(defun square (x) (* x x))
(defun sinh (x) (* 0.5 (- (exp x) (exp (- x)))))
; remember that snd-biquad uses the opposite sign convention for a_i's
; than Matlab does.
; convenient biquad: normalize a0, and use zero initial conditions.
(defun biquad (x b0 b1 b2 a0 a1 a2)
(let ((a0r (/ 1.0 a0)))
(snd-biquad x (* a0r b0) (* a0r b1) (* a0r b2)
(* a0r a1) (* a0r a2) 0 0)))
; biquad with Matlab sign conventions for a_i's.
(defun biquad-m (x b0 b1 b2 a0 a1 a2)
(biquad x b0 b1 b2 a0 (- a1) (- a2)))
; two-pole lowpass
(defun lowpass2 (x hz &optional (q 0.7071))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b1 (- 1.0 cw))
(b0 (* 0.5 b1))
(b2 b0))
(biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole highpass
(defun highpass2 (x hz &optional (q 0.7071))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b1 (- -1.0 cw))
(b0 (* -0.5 b1))
(b2 b0))
(biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole bandpass. max gain is unity.
(defun bandpass2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b0 alpha)
(b1 0.0)
(b2 (- alpha)))
(biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole notch.
(defun notch2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b0 1.0)
(b1 (* -2.0 cw))
(b2 1.0))
(biquad-m x b0 b1 b2 a0 a1 a2)))
; two-pole allpass.
(defun allpass2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(k (exp (* -0.5 w (/ 1.0 q))))
(a0 1.0)
(a1 (* -2.0 cw k))
(a2 (* k k))
(b0 a2)
(b1 a1)
(b2 1.0))
(biquad-m x b0 b1 b2 a0 a1 a2)))
; bass shelving EQ. gain in dB; Fc is halfway point.
; response becomes peaky at slope > 1.
(defun eq-lowshelf (x hz gain &optional (slope 1.0))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(A (expt 10.0 (/ gain (* 2.0 20.0))))
(b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0)))))
(apc (* cw (+ A 1.0)))
(amc (* cw (- A 1.0)))
(bs (* b sw))
(b0 (* A (+ A 1.0 (- amc) bs )))
(b1 (* 2.0 A (+ A -1.0 (- apc) )))
(b2 (* A (+ A 1.0 (- amc) (- bs) )))
(a0 (+ A 1.0 amc bs ))
(a1 (* -2.0 (+ A -1.0 apc )))
(a2 (+ A 1.0 amc (- bs) )))
(biquad-m x b0 b1 b2 a0 a1 a2)))
; treble shelving EQ. gain in dB; Fc is halfway point.
; response becomes peaky at slope > 1.
(defun eq-highshelf (x hz gain &optional (slope 1.0))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(A (expt 10.0 (/ gain (* 2.0 20.0))))
(b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0)))))
(apc (* cw (+ A 1.0)))
(amc (* cw (- A 1.0)))
(bs (* b sw))
(b0 (* A (+ A 1.0 amc bs )))
(b1 (* -2.0 A (+ A -1.0 apc )))
(b2 (* A (+ A 1.0 amc (- bs) )))
(a0 (+ A 1.0 (- amc) bs ))
(a1 (* 2.0 (+ A -1.0 (- apc) )))
(a2 (+ A 1.0 (- amc) (- bs) )))
(biquad-m x b0 b1 b2 a0 a1 a2)))
(defun nyq:eq-band (x hz gain width)
(cond ((and (numberp hz) (numberp gain) (numberp width))
(eq-band-ccc x hz gain width))
((and (soundp hz) (soundp gain) (soundp width))
(snd-eqbandvvv x hz (db-to-linear gain) width))
(t
(error "eq-band hz, gain, and width must be all numbers or all sounds"))))
; midrange EQ. gain in dB, width in octaves (half-gain width).
(defun eq-band (x hz gain width)
(multichan-expand #'nyq:eq-band x hz gain width))
(defun eq-band-ccc (x hz gain width)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(J (sqrt (expt 10.0 (/ gain 20.0))))
;(dummy (display "eq-band-ccc" gain J))
(g (* sw (sinh (* 0.5 (log 2.0) width (/ w sw)))))
;(dummy2 (display "eq-band-ccc" width w sw g))
(b0 (+ 1.0 (* g J)))
(b1 (* -2.0 cw))
(b2 (- 1.0 (* g J)))
(a0 (+ 1.0 (/ g J)))
(a1 (- b1))
(a2 (- (/ g J) 1.0)))
(biquad x b0 b1 b2 a0 a1 a2)))
; see failed attempt in eub-reject.lsp to do these with higher-order fns:
; four-pole Butterworth lowpass
(defun lowpass4 (x hz)
(lowpass2 (lowpass2 x hz 0.60492333) hz 1.33722126))
; six-pole Butterworth lowpass
(defun lowpass6 (x hz)
(lowpass2 (lowpass2 (lowpass2 x hz 0.58338080)
hz 0.75932572)
hz 1.95302407))
; eight-pole Butterworth lowpass
(defun lowpass8 (x hz)
(lowpass2 (lowpass2 (lowpass2 (lowpass2 x hz 0.57622191)
hz 0.66045510)
hz 0.94276399)
hz 2.57900101))
; four-pole Butterworth highpass
(defun highpass4 (x hz)
(highpass2 (highpass2 x hz 0.60492333) hz 1.33722126))
; six-pole Butterworth highpass
(defun highpass6 (x hz)
(highpass2 (highpass2 (highpass2 x hz 0.58338080)
hz 0.75932572)
hz 1.95302407))
; eight-pole Butterworth highpass
(defun highpass8 (x hz)
(highpass2 (highpass2 (highpass2 (highpass2 x hz 0.57622191)
hz 0.66045510)
hz 0.94276399)
hz 2.57900101))
; arch-tag: bbfeeb79-b168-4209-8ae8-6a472602d155